Nicodemo et al Method Evaluation of teeth development in North Indian Children and Young people

${ }^{*}$ S. C .Anand, ${ }^{* *}$ Balwant Rai, ${ }^{* * *}$ Jasdeep Kaur, ${ }^{* * * *}$ Rajnish K.Jain, ${ }^{* * * * *}$ O.P .Jasuja, ${ }^{* * * * * *}$ Kewal Krishan Ph.D, ${ }^{* * * * * * * B . K . ~ B e h e r a, ~}{ }^{* * * * * * * * S i m m i ~ K h a r b, ~}{ }^{* * * * * * * * * J a i p a u l ~ S i n g h ~}$

*(V.S.M) M.D.S. Orthodontics and Oral surgery, **BDS Editor in Chief Internet Journal of Dental Science USA, Editor in Chief International Journal of Dental Science, ***B.D.S. Kapurthala, ****M.D.S. Endodontics, *****Ph.D in Forensic Science, ******Lecturer in Anthropology Panjab University, Chandigarh, INDIA, *******Deptt. Of Biotechnology, ********M.D. in Biochemistry, *********UCLan ,UK

Abstract

The aim of the present study is to evaluate the applicability of the methods proposed by Nicodemo et al method for estimation of dental age and compared with chronological age. Orthopantograms of 413 patients, aged 70-195 months were selected to estimate the correlation between dental and chronological age. When the Nolla method was applied, the estimated age was less as compared to chronological age. There were significant correlation between chronological age and estimated dental age in both the genders.

Keywords

Orthopantograms, Nicodemo et al Method, dental age.

Introduction

Teeth represent useful material for age estimation. In childhood, the observation of the dentition status results in highly accurate age assessment. However, this accuracy decreases simultaneously with the completion of a person's dental development. ${ }^{1}$ The development of each individual can be affected by genetic, facial, nutritional, climate, hormonal and environmental actors. ${ }^{2.3}$ It has been reported that dental mineralization is less affected by external factors as compared to bone mineralization. ${ }^{4}$ In addition to its clinical importance, the radiographic diagnosis may have possible

[^0]medicologal implications, because it is one of the parameters proposed for helping to determine the age of undocumented youths. ${ }^{5-6}$ Numerous studies have been developed to estimate dental age. ${ }^{3,7-8}$ Although this variability may mostly relate to population differences, other factors, such as gender, age, and degree of dental maturation of the individual in different samples, may also play a major role. Hence, the present study was to determine the dental age of children in North Indian. In addition, the use of correction factors will assessed for allowing the clinical application of the study results.

Material and Methods

We examined 413 orthopantomographs corresponding to same number of patients from the Bhagwan dental clinic, Jind and Jain Diagnostic Centre, New Delhi (India), 207 males and 206 females between 6 to 16 years of age. The criteria for inclusion in the sample were the availability in their clinical records of an orthopantomography of adequate quality, and no history of medical or surgical disease that could affect the presence and development of permanent teeth, including third molars. The children were assigned to 21 ,in a groups (at least $\mathrm{n}=24,12 \mathrm{M}: 12 \mathrm{~F}$) according to the chronological age. At time of radiograph examination, the chronological age of each child was calculated on the basis of the child is reported date of birth. The statistical analysis was applied when the result of the intra examiner test was considered as adequate (by Dalberg's formula error was 0.50 months). Dental age was assessed by orthopantomographs according to the methods proposed ${ }^{9}$. Data were tabulated and submitted
to statistical analysis using SPSS version 11.0 and student ' t ' test was performed.

Results

Table 1 shows that the mean chronological age for boys was 143.20 months and for girls was 141.80 months. In both genders the mean dental age was less as compared to chronological age in method (Table I, P<0.01) and due differences were quite marked for the older groups.

Table 2 shows the difference between chronological age and dental age for both methods and for male and female subgroups using student ' t ' tests and pearson correlation coefficient, which revealed high and the statistically significant ($\mathrm{P}<0.01$) values. Thus a high correlation between dental age and chronological age can be estimated.

Discussion

Age estimation for medicological purposes (age at death, criminal cases etc) and clinically represents a fundamental problem, and various methods have been established for age determination. It has been shown that dental development relates more closely to chronological age than skeletal, somatic or sexual maturity indicators ${ }^{2}$. Tooth formation has been more widely used than tooth eruption for assessing dental maturation because it is a continuous and progressive process that can be followed radiographically, and most teeth can be evaluated at each examination. There are several methods for estimating dental age, among them, the method proposed by Nicodemo et al 9 which has been developed taking into consideration because it is easily to use, accurate, almost used by every pedodontist etc. It has been reported that development of each individual can be affected by genetic, racial, nutritional, climate, hormonal and environmental factors ${ }^{2,6,7}$. Hence, considering the regional difference in country region like India, establishing specific parameters for each would be very significant. In the present study, the applicability of method was applied for age estimation for North Indian population. The 70195 month age range was chosen because most maturity occur during this period. In present study, in boys, the mean dental ages were
underestimated in both methods and differences were significant for older groups ($\mathrm{P}<0.01$, table 1) which is in agreement with a previous study ${ }^{10}$.

In girls, the mean dental age was also less in Nicodemo et al method while more in Nolla (Table 1, $\mathrm{P}<0.01$) which is contrary with previous study. ${ }^{10}$ This may be due to difference in geographical factor and other factors. It has been reported that overestimation in younger children and an underestimation in older age children of southeast Brazil using Nolla method. ${ }^{11}$ While in another study showed the dental age was significantly higher than chronological age among Chinese children. ${ }^{12}$ Some authors observed that the methods of conversion to dental ages depend on the population at issue ${ }^{10,12}$ Hence, correlation factors must be established to make the method (Nicodemo et al) applicable to Indian population.

References

1. Kullman L. Accuracy of two dental and one skeletal age estimation Method in Swedish addescents. Forensic Sci. Int 1995; 75 : 225-36.
2. Lewis AB, Garn SM. Relationship between tooth formation and other maturational factors. Angle orthod 1960; 30 (2) : 70-7.
3. Moorrees CF, Fanning EA, Hunt EE. Age variation of formation stages for ten permanent teeth. J Dent Res 1963; 42 (6) :1490-502.
4. Green LJ. The interrelationships among height, weight and choronological, dental and skeletal ages. Angle orthod 1961; 31 : 189-93.
5. Thorson J, Hagg U. The accuracy and precision of the third mandibular molars as an indicator of chronological age. Swed. Dent J. 1991; 15: 15-22.
6. Kullman L, Johanson G, Akesson L. Root development of the lower third molar and its relation to chronological age. Swed Dent J 1992; 16 : 161-67.
7. Nolla CM. The development of permanent teeth. J Pent child 1960; 27 (4) : 254-66.
8. Demirijian A, Goldstein H, Tanner JM. A new system of dental age assessment. Hum Biol 1973; 45 (2) : 211-27
9. Nicodemo RA, Moraes LC, Medici FE. Tabela Cronologica da, mineralizacao dos dentes permanentes entre brasileiros. Rev Fac odental Sao Jose Compos 1974; 3 (1) : 55-6.
10. Kurita LM, Menezes AV, Casanova MS, Haiter heto F. Dental maturity as an indicator of chronological age : radio graphic assessment of dental age in a Brazilian population. J Appl oral Sci. 2007; 15 (2) : 99-104.
11. Souza Freitas JA, Tavano O, Alvares LC, Lopes ES. A plicacao Odonto-legal de algumas tabelas cronologicas da evalucao dental. Estomatol cult. 1970; 4 (2): 181200.
12. Davis PJ, Hagg U. The accuracy and precision of the "Demirjian System" when used for age determination in Chinese children. Swed Dent J 1994; 18(3) : 113-6.

Table 1 : Mean (in months) and standard deviation (SD) of chronological age and estimated dental age using the method proposed by Nicodemo, et al for North Indian (Boys \mathcal{E} Girls)
$\begin{array}{ll}\text { Groups } & \begin{array}{l}\text { Age ranges } \\ \text { (in months) }\end{array}\end{array}$
Boys (mean \pm SD)

Chronological age	Nicodemo et al
73.40 ± 02.11	71.20 ± 06.30
79.20 ± 01.93	78.10 ± 06.82
84.50 ± 01.73	83.50 ± 08.83
91.10 ± 02.21	89.30 ± 08.85
95.50 ± 01.70	93.10 ± 09.32
103.10 ± 01.85	101.20 ± 11.30
107.90 ± 01.83	103.80 ± 12.40
114.00 ± 02.13	107.40 ± 12.80
121.51 ± 01.70	116.80 ± 09.62
127.80 ± 01.69	120.40 ± 09.69
131.91 ± 01.12	127.30 ± 10.30
138.10 ± 01.83	133.90 ± 09.80
143.90 ± 01.86	140.80 ± 14.60
150.50 ± 01.10	145.80 ± 15.50
156.20 ± 01.85	150.60 ± 14.70
163.20 ± 01.87	160.20 ± 13.80
169.20 ± 01.83	162.80 ± 09.82
175.30 ± 01.69	171.90 ± 10.80
178.30 ± 01.65	173.80 ± 16.83
187.40 ± 01.70	182.82 ± 09.92
192.30 ± 02.80	190.30 ± 12.30
143.20 ± 01.89	138.40 ± 21.41

Chronological age	Nicodemo et al
74.30 ± 02.10	81.30 ± 08.34
78.90 ± 02.93	83.40 ± 10.89
85.60 ± 01.69	92.80 ± 08.87
90.20 ± 01.87	87.81 ± 09.53
96.60 ± 02.70	91.30 ± 07.69
102.80 ± 2.85	112.40 ± 8.90
106.70 ± 2.87	109.30 ± 12.35
113.80 ± 2.63	109.40 ± 11.62
122.61 ± 1.55	103.70 ± 11.53
128.20 ± 1.53	110.89 ± 11.63
132.92 ± 1.32	119.91 ± 20.13
139.20 ± 2.34	121.54 ± 11.93
142.80 ± 2.87	134.70 ± 11.89
149.40 ± 1.89	137.50 ± 12.87
157.10 ± 1.86	139.60 ± 13.89
162.30 ± 1.88	142.50 ± 14.39
170.30 ± 1.87	150.40 ± 13.49
176.40 ± 1.70	164.32 ± 09.77
179.40 ± 1.66	170.41 ± 08.32
188.50 ± 1.75	176.62 ± 14.32
191.21 ± 2.81	184.61 ± 13.31
139.89 ± 29.62	141.80 ± 3.29

Table 2 : Statistical correlation between chrondogical and estimated dental age for both genders
Male Female

Chronological	Nicodemo Age
Age (a)	

Chronological 1.000
age

Chronological	Nicodemo
Age (a)	et al (a)

ge

Nicodemo et al	0.739	0.623	0.923
Nolla	0.832	0.821	0.673

$\mathrm{P}<0.01$ at all level

[^0]: Reprint requests: Prof. S.C. Anand
 C/o Dr. Balwant Rai (Founder of Aeronautic Dentistry), Vill. Bhangu, Distt. Sirsa,
 P.O. Sahuwala (Haryana) INDIA

